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In this report III of this series, we will carry the 

development of report II to one further level of approxima- 

tion by carrying out the transformation which removes the 

neglected terms in the Hamiltonian Ii3. In this way, we ob- 

tain correction terms to the variables X, P used in report I, 

and defined by Eqs (II-13),~(11-17), and (11-25). Thus we 

can estimate, for example, deviations of the actual phase 

plot from the idealized plot of Fig. I-l. We also obtain 

contributions of the neglected terms to R4, which will enable 

us to calculate the bending of the separatrices in Fig. I-l. 

Consider a typical non-resonant term 

H3Rm W3’* cos (Ly - mO + n 
3Rm) (1) 

in the Ramiltonian (11-21) where !Z * 1 or 3. The final ap- 

proximate Hamiltonian (II-261 was obtained by neglecting all 

terms (1) except the resonant term P, = 3, m = m. which drives 

the extraction resonance v = m,/3. 

To eliminate the term (l), we utilize the generating 

function 

s = p’y + s 311m (2P')3'2 sin (Ily - mG + n 
39.m)' (2) 

which gives the transformation 
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31m (2P')3'2 cos (EY - mO + n3tm), 

(3) 
as - y'=ap'- Y + 3s~~(2P’) l/* sin (ily - mO + n3gm). 

The latter equation can be by approxima- 

tions for 

y = y' - 3s 3em (2P’) '/* sin (Ily' - m0 + 71~~~) + *e*.(4) 

We substitute the first of Eqs. (3) in I! = H2 + H3 + **' to 

obtain 

H' I H + & ,JO~ + . . . 

+ 
1 

H3Lm + (‘&II - m)S3am 
1 

(2p')3'2 COB (Ly - mcl + n3Lm) , 

+ H3Qm (2~)3'~ - (2p8)3'2 
t I 

cos (EY - m9 t rj3am) t ... (5 

The third order term can be eliminated by setting 

provided we are not too close to the resonance v = m/t. 

After carrying out the above transformation on every 

nonresonant term, we arrive at a Hamiltonian E' which to 

third order contains only the terms in Eq. (11-24). Equa- 

tion (11-24) is therefore exact to third order provided we 

replace p, y by the variables 
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cx ' !LH 
p' = p - -.2& (zp)3/* 

k=1,3 m m - iv 
cos (ky - mO t n 31m) + ***, 

(7) 

Y' =yt sin (!Ly - m0 t 17 3ai") + *-- . 

The prime on the summation sign means that the resonant term 

!Z = 3, m = m. is omitted. In rectangular coordinates at the 

septum (0 = 0): (8) 

x = X’ - 
Iz 

!!3hL (3Pt2 t Xf2) sin n31m 
1 

t 2P'X' cos n31m 
m m-v I 

-1 
t 3H33m cp,2 

m - 3v [ 
- Xl*) sin n33m - 2P'X' cos njjm + . . . 1 m 

p = p't c 
'*3lm 

m m-v [ 
(3X12 + Pt2) COS T131m + 2P'X' sin n31m 

I 

-1 ' 3H33m 

m m - 3v [ 
(Xl2 - Pl2) cos n 

33m 
t 2P'X' sin n33m + 1.. 

3 

Equation (II-24), which leads to Yq. (11-26) on 

which report I is based, should be understood now in terms of 

the ,primed variables. In the figure and equations of re- 

port I, all capital variables should be primed. Equations 

(11-13) give the connection between the unprimed variables 

X,P and the original betatron variables x, dx/dO, mentioned 

in the first paragraph of report I. The figures and results 
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of I should therefore be corrected by Eqs. (8) before they 

are interpreted in terms of x, dx/dO via Eqs. (11-13). 

We see from formulas (11-22) that all H 
33m 

are of the 

same order as H33m0 and H31m - 3H33m0 except for those coef- 

ficients which happen to be small or vanishing either fortu- 

itously or because of the deliberate arrangement of the sex- 

tupoles. The fractional corrections to the primed variables 

are therefore of the order of 

E = 3A(2~)1'~ , 
m - Rv (9) 

where A = H33mo. Thus at an amplitude (2~)~'~ = X0, [Eq.(I-5)], 

nea.r the separatrix, we expect fract.i.onaI, corrections of the 

order of 

(10) 

from the term Ii3Rm. The error at the extraction septum will 

be larger by a factor Xe/Xoi in the notation of report I. 

We note from Eq. (10) that e. is of the order of Iv - m,/31, 

so that the error due to neglecting the correction (8) will 

be less than 1% provided we have eliminated those terms li3Lm 

for which Im - llvl < 1. Since v. = m,/3, we will have for 

the nearest unwanted resonances 1111 - llvl - l/3, so that even 

they will contribute very little error. 

We now calculate the sextupole contribution to IJ4 by 

substituting from Eq. (7) in the higher order terms in Eq. (5): 
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II’ 
4 

= (2p')2 
c 

3~‘f13Qm 133R,m, 

(1,m,9,',m' 
m' - i?'v cos (ky - mO + nxam) . 

cos (Lly - ml0 + 17~~~~~) + *** , (111 

where the dots represent any octupole contributions which 

may be present. Hi contains no terms which drive the reso- 

nance v = m,/3, so that the only term of interest is H4 o o. 

The rest of the terms could be transferred to higher order 

by the method used above. The transformed Ifamiltonian to 

fourth order is therefore 

II' = up' t fi 
33m0 

(2p')3'2 cos (3~' - moO + n33m 
0) 

+ H4 o o (2p'j2, 

where, from Isq. (ll), 

c 2' 

LH2 
R4 o o = 312 3an + H;$ o , 

m - Ilv 
L=1,3 m 

where Il~"~ o is the octupole contribution, if any. 

As an example, if there is a single sextupole, 

Eqs. (11-22) give 

(12) 

(13) 

(14) 

where 6 is evaluated at the sextupole and F is its strength 

[defined by Eqs. (II-11+)]. If there are no octupole contribu- 

tions, Eqs. (13) and (14) p,ive 
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Q3e2R2F2 3v - m 
R40 o= 0 

64n2i.12y2iL!2 m ' - (3~ - mO)* 

7 

t 3( v - ml) t 1 ; ,4.89B2e2R2F2 (15) 
m2 - (v - ml) 2 1 1 v - ml 

64~~~?1~~2,2 ’ 

where ml is the nearest integer to v, we have taken v = m,/3, 

and the result is positive if v > ml, otherwise negative. If 

there are n sextupoles each of strength +F evenly spaced at 

homologous points around the machine, then H3%.,, vanishes un- 

less m is a multiple of n, and in that case Eq. (14) holds 

with F replaced by nF. Cleariy mO must be a multiple of n in 

order to drive the extraction resonance. In Eq, (151, F Is 

replaced by nF, and m and ml must be multiples of n. The 

value of H4 o o is then almost identical with the value given 

by the second line in Eq. (15) for a single sextupole of 

strength F if the nearest integer to v is divisible by n; 

othervise the number 4.89 is replaced by 5.27, 8.29, 10.0, 

13.6, . . . 1.9 k, if the nearest multiple of n differs from 

v by 2/3, 4/3, 5/3, 7/3, . . . . k/3. If n = 2n' is even, and 

the sextupoles strengths alternate signs, (?F), then H3Qm 

vanishes unless m is an odd multiple of n', in which case 

F is again replaced by nF in formulas (14) and (15). 

~c reach a given driving amplitude A = H33m with n 
0 

sextupoles requires n-1 times the sextupole strength F needed 

with one sextupole. Since H4 o o is proportional to F2 and 

is otherwise roughly independent of n, we reduce H4 o o by 
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roughly a factor n-* with n appropriately arranged sextuPoles. 

In the n sextupoles are not at homologous points, or 

are not evenly spaced around the machine, the effective sex- 

tUPOle s"i;:rengtth driving v = m0/3 will still be roughly nF if 

the signs of the sextupoles are wisely chosen, but the cancella- 

tions will no longer occur in the sum over m in Eq. (13) 

which led to small numerators,and denominators proportional to 

m2,in the sum in Eq. (15). The curly brackets in I‘opmu1.a (1.5) 

will then be replaced by a numerical factor which can be as 

large as 4 an m2, where m2 is a harmonic number above which 

*3Rm becomes small. Since m2 - 2n/A0, where A@ is the angu- 

lar length of the sextupole, this factor may be as large as 

49.n104 - 40 or ten times as large as with symmetrically 

placed sextupoles. 


